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4.1. Introduction. In this chapter, possibility to construct some geometrical figures using ruler and 

compass are discussed by the help of some algebraic structures. Also the solvability by radicals of 

generic polynomial is discussed  

4.1.1. Objective. The objective of these contents is to provide some important results to the reader like: 

(i) Normal Extensions. 

(ii) Fixed Fields, Galios Groups 

(iii) Norms and Traces. 

4.1.2. Keywords. Normal Extensions, Galois Group, Fixed Fields. 

4.2. Ruler-and-compasses constructions. 

Three main problem of Geometry are: 
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Using the traditional geometrical instruments ruler and compasses can we 

1. Trisect an arbitrary given angle. 

2. Construct a cube having volume double to that of a given cube. 

3. Construct a square with area equal to that of a given circle. 

We shall show that these three problems are insolvable. 

Consider the Euclidean plane and two straight lines intersecting at right angles in this plane meeting at a 

point O . Assume I  is an arbitrary point on one of those lines. Then, by taking O  as origin and I  to be 

the point (1,0) , we can set up a Cartesian coordinate system in the plane. Let B  be a collection of 

points in this plane, including O  and I . With the points in B we can start our construction and so these 

points will be called basic points. 

By ruler-and-compasses construction based on B  we mean a finite sequence of operations of the 

following types:  

(1) Drawing a straight line through two points which are either basic points or points previously 

constructed in the sequence of operations. 

(2) Drawing a circle with center at a basic point or a point previously constructed with radius equal 

to the distance between two points, each of which is either a basic point or a point previously 

constructed. 

(3) Obtaining points of intersection of any two obtained in (1) and (2), which are (a) points of 

straight lines, (b) pairs of circles, (c) straight lines and circles. 

Any point P  which is obtained by (3) based on B  is said to be constructible from .B  If B  consists of 

the points O  and I   and no others, we simply say that B  is constructible. 

Let P  be any point of the plane with coordinates ( , )   determined by O  and .I  The subfield of R 

obtained by adjoining   and   to B will be denoted by B( P ). 

4.2.1. Theorem. If the point P  is constructible from ,B  then the [B( P ) : B] = 2n for some non-

negative integer n. 

Proof.  To obtain P from B in ruler-and-compasses construction let the sequence is 1 2, , , nP P P P  of 

operations of type (3). Suppose that 1P  is one of the basic points and the co-ordinates of ( 1, , )iP i n  

be ( , )i i  . 

Let K  = B( 1, , nP P ). We claim that [K : B] = 2n. Then the result follows directly as B( P ) is a subfield 

of K and hence [B( P ) : B] is a factor of [K : B]. 

We prove by induction on .n   

If 1n  , then K   B( 1P ) = B, thus 
0[ : ] 1 2 .K  B    

Now assume result holds for n = k-1, that is, if L is the subfield of R  obtained by adjoining to B  the 

coordinates of 1 1, , kP P   then [ : ] 2sL B  for some s. 
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If iP  and 
jP  are distinct points (1 , 1)i j k    then the equation of straight line 

ij  joining them is  

( )( ) ( )( ).j i i j i iy x           

Similarly, if rP  and sP  are distinct points and tP  is any point (1 , , 1),r s t k    then the equation of 

circle ,t

rs   with center tP  and radius equal to the distance between rP  and sP  is  

2 2 2 2( ) ( ) ( ) ( ) .t t r s r sx y                        (1) 

Let T = B ( 1, , kP P ) =L( kP ).  If kP   is obtained from 1 1, , kP P   by intersection of two lines like ,ij  

then its coordinates are obtained by solving two linear equations with coefficients in L and so its 

coordinates lie in L Thus, T = L and so [ : ] [ : ] 2sL T B B . 

Similarly, in other cases [ : ] 2tT B  for some t (Left as an exercise to the reader). 

This completes the Proof. 

4.2.2. Theorem. Let P  be a point in the plane and ( )PB  has a sequence of subfields, 

1 1 0( ) , , , ,n nP K K K K B B  such that iK  includes 1iK   and 1[ : ] 2( 1, , ),i iK K i n    then P  is 

constructible from B. 

Proof.  We proceed by induction on .n   

If 0n   then ( ) .P B B   Hence, P  is constructible from B. Now, let result holds for n = k-1. 

Assume that K  has a sequence of subfields 1 1 0, , , ,k kK K K K K  B . Since 1[ : ] 2,k kK K    it 

follows that kK  is a normal extension of 1kK  . If kK   such that 1kK  , then 1( )k kK K  . If 

minimum polynomial of   over 1kK   is 2 2 21 1
( ) ( )

2 4
X aX b X a b a      . Considering

1

2
a   , 

we have 2 21
0;

4
a b     thus 2  is a positive element of 1kK    and clearly 1 1( ) ( )k k kK K K    .  

Now, since 
2( , 0)  has coordinates in 1kK  , it is constructible from B, by the induction hypothesis. 

Hence every point with coordinates in kK  is constructible from B. This completes the induction. 

4.2.3. Corollary.   Let P  be a point in the plane. If the field ( )PB  is a normal extension of  B  such that 

[ ( ) : ]PB B  is a power of 2 , then the point P is constructible from B. 

Proof.  Let G  be the Galois group of ( )PB  over B , Then |G| = [ ( )PB  : B ] = 2 .s  Then, G  has a 

sequence of subgroups, 0 1 2, , ,..., { }nG A A A A e   each of index 2  in the preceding. Thus, ( )PB  has a 

sequence of subfields 0 1 2( ) , , ,..., nP K K K K B B  each of degree 2 over the next. Hence P is 

constructible from B. 
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4.3. Solution by radicals. 

Let F be a field of characteristic zero and E is an extension of F, then E is said to be an extension of F 

by radicals if there exists a sequence of subfields F = E0 , E1 , … , Er-1, Er = E  such that 

Ei+1 = Ei(αi), 

for i = 0 , …, r -1, where αi is a root of an irreducible polynomial in P(Ei) of the form Xni - ai. A 

polynomial f(x) in F[x] is said to be solvable by radicals if the splitting field of f(x) over F is contained 

in an extension of F by radicals.  

4.3.1. Theorem. Let F be a field of characteristic zero, K a normal extension of F with G(K,F) is 

abelian. If [K : F] = n and the polynomial kn = Xn - 1 splits completely in F[X], then K is an extension of 

F by radicals. 

Proof. Let G = G(K,F). Then, G may be expressed as a direct product of cyclic groups, say 

G = C1 x … x  Cr. 

Define, Gi = C1 x C2 x … x Cr - i, for i = 0, …, r – 1,  and Gr =< I >, where I is the identity element of G. 

Then Gi+1 is a normal subgroup of Gi and  

1

i
i

i

G
C

G 

   for i = 0, …, r - 1. 

Let Ei be the subfield of K left fixed by Gi for i = 0, …, r. Then, Ei + 1 is a normal extension of Ei with 

cyclic Galois group, isomorphic to Cr-1 for i = 0, …, r-1. Since the degree ni of Ei + 1 over Ei is a factor of 

n and kn splits completely in F[X] and hence in Ei[X], it follows that kn splits completely in Ei[X]. So 

Ei+1 = Ei(αi) where αi is a root of an irreducible polynomial in Ei[X] of the form Xni - ai for i = 0, …, r -1. 

Thus K is an extension of F by radicals, as asserted. 

4.3.2. Theorem. Let F be a field of characteristic zero. For every positive integer n, the polynomial 

kn = Xn – 1 in F[X] is solvable by radicals. 

Proof. We prove the result by induction on n. 

If n = 1, then the splitting field for kn over F is F itself, which is an extension of itself by radicals. 

Now, suppose that every polynomial kl with l < m is solvable by radicals. 

Let Km be a splitting field of km over F containing F. If [Km : F] = r, then r ≤ φ(m) < m.  According to 

induction hypothesis, kr is solvable by radicals and so there is a splitting field Kr of kr over F which is 

contained in an extension E of F by radicals. Without loss of generality assume that E and Km are 

contained in the same algebraic closure C of F, then consider L = E(Km)    C. 

Then, L is a separable normal extension of E and the Galois group G(L, E) of L over E is isomorphic to 

a subgroup of the Galois group G(Km, F) of Km over F. Hence G(L, E) is Abelian. It follows that  

s = [L : E] is a factor of r = [Km : F]. Since kr splits completely in E[X], so too does ks. Thus L is an 

extension of E by radicals. Since E is also an extension of F by radicals it follows that L is also an 

extension of F by radicals and hence km is solvable by radicals. 

This completes the induction. 
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Before proceeding further, we discuss some results of solvable groups. 

4.4. Solvable Group.  A group G is said to be solvable if there exists a sequence of subgroups 

   G  = 0G    1G    2G    . . .   Gn   =  e   

such that (i) 1G i    G i    for  0   i   n – 1 

  (ii) 1G Gi i   is abelian  for  0   i   n – 1. 

Results. 

1. Every subgroup  of a solvable group is solvable. 

2. Every quotient group of a solvable group is solvable. 

3. Let G be a group and H be a normal subgroup of G. Then if H and G H  both are solvable, then 

prove that G is also a solvable group. 

4. A finite  p-group is solvable. 

5. Direct product of two solvable groups is solvable . 

6. Let  H  and  K  are solvable subgroups of  G  and  H   G then  HK  is also solvable. 

7. Show  that every group of order  pq  is solvable where  p  ,  q  are  prime numbers not  

necessarily distinct. 

8. Prove that every group of order  p2q , p and q are primes , is solvable . 

9. Sn  is solvable  for  n4. 

10. Sn  is not solvable  for  n > 4.    

11. If a subgroup  G of   Sn   (n > 4)  contains every 3 – cycle and  H  be any  normal  subgroup of  G  

such that  G H   is abelian  then  H contains all the 3 – cycles. 

12. Homomorphic image of a solvable group is solvable. 

13. A finite group  G  is solvable iff there exist a sequence of subgroups 

G   =   G0     G1    . . .    Gn   =   < e > 

such that    Gi+1   Gi   and   i i+1G G    is cyclic  group of prime order for  0    i  n. 

14. A group  G  in is solvable iff  (n)G   =  < e >  for some  n   0. 

15. An is not solvable for  n5  and  hence  Sn  is also not solvable for  n5. 

We now state a criterion for a polynomial to be solvable by radicals. 

4.4.1. Exercise. Let F be a field of characteristic zero. A polynomial f(x) in F[x] has splitting field over 

F with a solvable Galois group iff f(x) is solvable by radicals. 

4.5. Solution of Polynomial Equations by Radicals. 

An extension field K of F is called a radical extension of F if there exist elements 1 2, ,..., m K    such 

that 

1. 1 2( , ,..., )mK F     

2. 1

1 1 2 1 1 2 and ( , ,..., ) for 1,2,...,  and integers , ,...,inn

i i mF F i m n n n         
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For ( ) [ ]f x F x  the polynomial equation f(x) = 0 is said to be solvable by radicals if there exists a 

radical extension K of F that contains all roots of f(x). 

If now 1{ , , }nx x  is asubset of a field E  algebraically independent over the subfield F  of ,E the 

polynomial  

1 2

1 2 ( 1)n n n n

n ng X x X x X x         

in ( ( ))P F x  is called a generic polynomial of degree n  over .F  So a generic polynomial over F  is one 

which has no polynomial relations with coefficients in F  connecting its coefficients 

4.5.1. Theorem.  Let 1

1 ( 1)n n n

n ng X x X x      be a generic polynomial of degree n  over a field 

F  of characteristic zero. Then the Galois group of any splitting field of ng  over 1( , , ) ( )nF x x F x  is 

isomorphic to the symmetric group on n  digits. (Left as an exercise for students) 

4.5.2. Theorem. The generic polynomial of degree 5n   is not solvable by radicals. 

Proof. Since the Galois group of any splitting field of ng  over 1( , , ) ( )nF x x F x  is isomorphic to the 

symmetric group Sn,. But Sn is not solvable group when 5n  . Hence f(x) is not solvable by radicals 

over 1( , , ) ( )nF x x F x  when 5n  . 

4.6. Check Your Progress. 

1. Design fields of order 27, 16, 25, 49. 

2. Compute ɸ
30

. 

4.7. Summary. 

Constructing a cube having volume double to that of a given cube is equivalent to the construction from 

the basic points O  and I  of the point ( ,0),  where   is the real number such that 3 2.   Since the 

polynomial 3 2X   is irreducible in ( )P Q , the field ( )Q  has degree 3 over Q  and hence, since 3 is 

not a power of 2, the point ( ,0)  is not constructible from O  and .I  Constructing a square with area 

equal to that of a given circle is equivalent to the construction of the point ( ,0).  However,  is not 

algebraic over the field of rational numbers. Hence ( ( ) : )Q Q  is infinite and hence cannot a power of 2. 
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